Tag 1
Montag, 8. Mai 2023, 9.00 – 13.00 Uhr
Montag, 20. November 2023, 9.00 – 13.00 Uhr
ABSATZ- UND VERTRIEBSLASTPROGNOSEN

ABSATZ- UND VERTRIEBSLAST-PROGNOSEN IM ÜBERBLICK
Einführung Energieprognosen
- Der Zusammenhang von Energieverbrauch, Energieerzeugung und Energiepreis
- Wie haben sich die Anforderungen an die Prognose im Zuge der Energiewende geändert?
- Die Bedeutung der Prognosen im liberalisierten Markt und Bilanzkreismanagement
- Welche Auswirkungen können Prognosefehler haben?
Verfahrensüberblick Lastprognosen
- Grundlagen für die Entwicklung von Prognosen
- Was müssen Absatz- und Vertriebslastprognosen leisten?
- Verfahrensüberblick/Prognosemethodik
(Zeitreihenanalyse und modellbasierte Prognoseverfahren)
Einflussfaktoren auf den Stromabsatz
- Absatzsegmente und Kundenwechsel
- Tagestypen, Jahreszeiten, Klima und Wetter
- Netzlast und analytische Restlast
- Analyse und Bewertung der Einflussfaktoren
- Der steigende Einfluss des Wetters auf Energiewirtschaft und Prognosen
PROGNOSEPROZESSE
Prognoseanwendung in Energiehandel und der Assetbewirtschaftung
- Portfolio- und Vertriebsmanagement
- Prognosen im Kurzfristmarkt/Intraday-Handel
- Ineinandergreifende Prognoseprozesse von Vertrieb, Handel und Erzeugung
- Welche Risiken verantwortet der Vertrieb und welche Risiken verantwortet die Beschaffung?
Neue Awendungsbereiche
- Smart Grid und Redispatch
- Sektorkopplung: Zusammenhang von Erzeugungs- und Lastprognosen
SPECIAL WETTERDATEN
Wetter, Klimawandel und Erneuerbare als Treiber im Energiemarkt
- Wetter, Klimawandel & Erneuerbare verändern den Strommarkt
- Grundlagen der Wettervorhersage (Daten, Modelle und Qualitätserwartung)
- Prognosen für den Energiemarkt – ohne Wetterprognosen geht es nicht
- Optimierungswerkzeuge für den/die Energieprognose-Manager:in

Tag 2
Dienstag, 9. Mai 2023, 9.00 – 13.00 Uhr
Dienstag, 21. November 2023, 9.00 – 13.00 Uhr

PREDICTIVE DATA ANALYTICS IN DER ENERGIEWIRTSCHAFT
Klassische Prognosemethoden und Verfahren der Zeitreihenanalyse im Überblick
- Vorverarbeitung der Rohdaten und Identifikation wichtiger Einflussfaktoren
- Lineare und Nichtlineare Prognosemethoden
-Lineare Regression
– Neuronale Netze - Tests zur Modellauswahl und Validierung der Modelle Tricks-of-the-Trade in der Zeitreihenmodellierung
Modellierung und Prognose eines Lastgangs mit Beispieldaten
- Datenanalyse und Datenvorverarbeitung, Umgang mit fehlenden Werten
- Schätzen des Modells anhand von historischen Daten
- Evaluation und Anwendung des Modells
Einführung in Neuronale Netze
- Historische Entwicklungslinien von Neuronalen Netzen
- Arten von Neuronalen Netzen und grundlegende Netzwerkarchitekturen
– Feedforward Neuronale Netze: Von der Mustererkennung zur Zeitreihenanalyse
– Rekurrente Neuronale Netze: Modellierung von Dynamischen Systemen - Designentscheidungen bei der Modellierung mit Neuronalen Netzen
- Vor- und Nachteile von Neuronalen Netzen gegenüber anderen Prognoseverfahren
Neuronale Netze für regenerative Energiequellen
- Modellierung und Prognose der kurzfristigen Energieeinspeisung von Windparks
Neuronale Netze im Energiemanagement: Lastprognosen
- Lastprognosen zur Unterstützung der täglichen Fahrplananmeldung
– Modellierung von Kalendereffekten
– Modellierung prototypischer Lastprofile
– Einbeziehung von externen Einflussfaktoren
(wie z. B. Wetterdaten oder kundenspezifischer Parameter) in die Prognose - Von der Prognose zur Entscheidungsunterstützung: Erwartungswert und Risiko im Fahrplanmanagement
Neuronale Netze im Energiemanagement: Preisprognosen
- Prognose der kurzfristigen Preisentwicklung des Stromspotmarktes
- Prognose der kurzfristigen Preisentwicklung des Stromfuturemarktes
– Kohärente Modellierung der Primärenergiemärkte zur Preisprognose
– Einbeziehung von externen Einflussfaktoren
(wie z.B. Devisenkurse oder Finanzmarktdaten) in die Prognose - Prognose der Gas- und Kohlepreisentwicklung
Tag 3
Mittwoch, 10. Mai 2023, 9.00 – 13.00 Uhr
Mittwoch, 22. November 2023, 9.00 – 13.00 Uhr

PREISPROGNOSEN ALS BASIS VON ENTSCHEIDUNGEN
Überblick – Preiseinflüsse und Prognosemethoden
- Wesentliche Einflussfaktoren auf Großhandelsstrompreise
- Welche Prognoseverfahren gibt es?
- Vergleich zwischen hPFC und „echter“ Prognose
Preisprognosen am Spotmarkt (Strom)
- Bewertung der Relevanz verschiedener Preiseinflüsse
- Methoden zur Evaluation der Modellgüte und Prognosefehler
Prognosen im Terminmarkt (Strom)
- Einführung in die charttechnische Analyse
- Technische Signale – EMA, Bollinger-Bänder, RSI und Co.
- Bewertung aktueller Terminmarktpreise mittels technischer Analyse
IMMER RELEVANTER
Langfristige Preisprognosen mit Fundamentalmodellen
- Funktionsweise des Merit-Order-Ansatzes
- Analyse der Input-Parameter
- Anwendungsfälle von Fundamentalpreisprognosen
Einsatz von Preisprognosen im Beschaffungsmanagement
- Wann werden Preisprognosen eingesetzt?
- Welche Preisprognosen werden eingesetzt?